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ABSTRACT
Admissible probability testing is a way of

administering multiple choice tests in which a student states his
subjective probability that each alternative answer is correct. His,
response is then scored by an admissible scoring system designed so
that the student °frill perceive that is is in his interest to report
his true subjective probability. With regard to admissible
probability to ots, two issues are treated surrounding the relation
between external incentives and optimal student behavior. It is shown
that excessibe competition or the use of a strict "pass- fail" system
can lead to responses which misrepresent the student's tnue state of
knowledge, and that the use of admissible scoring systems should
influence students to study fewer topics to a higher degree of
mastery than do other cbjective scoring systems. Issues treated here
are theoretical. Controlled field experiments will discover whether
the advantages and dangers theoretically inherent in computer -aided
admissible probability testing will show up in real life.
(Author/RC)
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A THEORY OF HOW EXTERNAL INCENTIVES AFFECT,
AND ARE AFFECTED BY, COMPUTER-AIDED ADMISSIBLE

PROBABILITY TESTING

Let me begin by reviewing for you some of the basic

facts about admissible probability testing. It is a

relatively new way of administering multiple choice tests

(see [1], [3], [4]). Instead of asking a student to choose

just one of the alternative answers to a question, you ask

him to state his "subjective probability" that each alter-

native answer is correct. His response is then scored by

an "admissible scoring system." Such a scoring system is

designed so that the student will perceive that it is in

his interest to report his true subjective probability.

What do we mean by true subjective probability? L. J.

Savage defined subjective probability in terms of betting

behavior: he would say that if an individual was willing

to bet $2.00 to $1.00 that a given event would take place,

but unwilling to bet $2.01 to $1.00 on the event, then that

individual's subjective probability that the event will

take place is two-thirds. An admissible scoring system

may be viewed as a system in which we take what a student

asserts his subjective probability to be, and make some

bets in his name which he would consider good bets if he

truly believes in the subjective probability he has assert-

ed to us. Obviously the student is generally only hurting

himself in such a system if he exaggerates or understates

his subjective probability. There are, of coura,
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a great many distinct "admissible scoring systems," but

in this talk we will generally limit our attention to the

logarithmic scoring system. For definiteness and for

convenience in graphical display we will consider only two-

alternative multiple-choice tests (such as true-false

tests). If we normalize the scoring system so that the

student gets zero if he expresses complete ignorance (i.e.,

if he specifies 1/2 as his subjective probability for each

of the two alternative answers) and one if he expresses

complete and accurate certainty (i.e., if he assigns

probability 1 to the correct response and probability 0

to the incorrect response), then our scoring system is simply

log2 (2p)

where p is the probability the student ascribes to the

correct alternative.

The purpose of my talk today will be to examine the

following two points:

o How is a student's study behavior affected

by the knowledge that he face an

admissible probability test rather than a

conventional true-false test?

o How will the student's response to particu-

lar questions on the test be affected by

his knowledge of how the total score

achieved will affect him?
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First we consider how the use of admissible scoring

systems affects, in theory at least, a student's study

behavior. To approach this question, we begin by observing

that if a student feels that, on some specific true-false

question, there is probability p that "True" is the correct

answer and probability 1 p that "False" is the correct

answer then his subjective expected score will be

p log2 (2p) + (1 - p) log2 (2(1 - p))

Figure 1 shows this function in graphical form (the solid

line). The dashed line in Figure 1 shows the expected score

if the student is facing a true-false test taken and scored

in the conventional way, with +1 given for choosing the

correct alternative and -1 given for choosing the incorrect

alternative. If the student thinks there is a .8 chance

that "True" is the correct answer, he will mark "True" and

feel he has probability .8 of winning a point and probability

.2 of losing a point, for a net expected gain of .6 points.

Notice that as the student acquires information to

move his probability away from the state of being uninformed

(p = .5), the optimal expected score from the simple procedure

increases in proportion to the distance moved along the prob-

ability scale while that from the logarithmic scoring proce-

dure increases only slightly at first and then more and more

as higher levels of mastery are achieved. Thus, the logarithmic

procedure requires a higher level of mastery to yield any

given optimal expected score than does the simple choice
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procedure and, in this sense, serves as a more stringent

incentive system for learning.

Because lower levels of mastery often require less

effort to achieve than do the higher levels, admissible

scoring systems may prove to be reward systems which can

motivate students to achieve higher levels of mastery of a

subject matter than they do under a conventional system.

To investigate this quantitatively, assume that the student

has, for each question, an exponential "learning curve" of the

form

p = 1 - 2 exp (-2Xc)

where c represents the cost to the student in time and

energy, say, of the effort he puts into studying the

question; X is a parameter which reflects the "easiness"

or rate of learning of the subject matter of the question;

and p is the student's subjective probability associated

with the correct answer (see Figure 2). Thus, if the student

puts no study at all into the question (i.e., c = 0), his

probability for the correct answer is .5. As he invests

effort in studying the subject matter his probability

increases asymptotically toward 1.0.

There are two good ways of modeling the way a student

will choose to spend his study time and effort. You may

either assume that he has a fixed amount of time available

and seeks to allocate it across the questions he expects in

such a way as to maximize his optimal expected score; or
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you may assume that there is some "exchange rate" between

study time and score (e.g., one point of score is worth

three minutes of time) and that he will "spend" his time

on each question in such a way as to maximize his "profit,"

i.e., the difference between his expected score on a

question and the value of the time he expends on study-

ing it. These approaches will be discussed separately,

but it will become apparent that their solutions are

closely related.

First, suppose that the student has a fixed and limited

amount of study time available and wishes to allocate it

over the questions likely to be asked in such a way that he

will maximize his expected score. Figure 1 expresses

expected score as a function of subjective probability, and

Figure 2 expresses subjective probability LS a function of

effort. We can combine these curves to get expected score

(E) as a function of cost in study time (c). This new

function is shown in Figure 3 for both the conventional

scoring system and the logarithmic scoring system (assuming

X, the parameter reflecting easiness, is one-half). The

maximum return (in terms of expected score) per unit of

effort may be found graphically by measuring the slope of

the steepest line through the origin which is tangent to

the optimal expected score function. Analytically, it can

be determined by finding the point where the derivative of

(E)
with respect to c is zero. Now in fact
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Fig.3 Optimal expected score as a function of effort (c) when A = 0.5
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d (E\ 1.dE.da E
dccj c dp dc c2

-(1 p) log [2(1 p)]ce E

c
2

Because of the particular form chosen p(c), the numerator

of this expression depends on p alone, not on c or X. Thus,

there exists a "critical value" of p, say p , for any given

scoring rule such that on any question, regadless of what X

may be, the student will get maximum rc:orard per unit effort

to bring his probability for the -,orrect answer up to p .

It is easy to calculat p for any given scoring rule.

To be specific:

Scoring Rule Critical Probability

Simple Choice or Linear .5

Logarithmic .891....

An allocation procedure which yields an approximately

optimal solution to the overall problem (and an exactly

optimal solution in most cases) is as follows. Arrange

the questions in order of increasing difficulty (so that

X
1

X
2

X
n
). The student should work on the first

question until he has expended enough effort so that p z p

and the ratio of marginal return to marginal cost (that is,

*

dEn-) is just equal to the maximal achievable gain per unit

effort on the second question. Then he should work on

the second question until p Z p and then work on the first

and second questions (keeping marginal return ratios equal)
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until the marginal return ratios equal the maximal achiev-

able gain per unit effort on the third question. The

process is continued until the student has expended all

the effort he has available.

This allocation procedure will yield the true optimum

for the scoring rules considered above if the student "runs

out of gas" at a point where every question which has been

worked on at all has been worked on to a point where p Z p .

In more complicated, non-reproducing scoring procedures that

do not have steadily diminishing marginal returns for
*

p z p , the allocation procedure described above will not

work so well.

Now obviously a "real-life" student will not go through

a careful quantitative analysis of how to allocate his study

efforts, but the quantitative model (which may come to

represent the behavior of experienced, test-wise students

fairly well) does catch one aspect of study behavior which

is worth remarking: the use of a logarithmic scoring rule

encourages the student to study fewer questions to a higher

degree of mastery, while the conventional simple-choice

procedure encourages the study of more questions to a lower

degree of mastery. Which incentive system is to be preferred

depends upon the particular learning situation at hand.

Neither incentive system offers a panacea when study

time is strictly limited. On the one hand, use of the con-

ventional simple-choice procedure may mean that none of

the subject matter will be remembered more than a few hours

or days beyond the time of taking the test. On the other



hand, use of the logarithmic procedure may mean that while

some of the subject matter will be remembered, the student

will not know enough of the subject matter for it to be of

any use to him.

An alternative way of modeling the student's study

incentives is to assume that his study time is not strictly

limited and that his time has a value to him which is

commensurable to the value of the test score he may earn.

If the total amount of time whim he may spend on study

is flexible, he would perhaps attempt to maximize his

"profit" on each test question. That is to say, he would

choose an expenditure of time c on each question which

maximizes E(c) sc, where s is the value, in units of

test score, of a single unit of time (or study effort).

We will assume that the units of time (or study effort)

have ben chosen in such a way that s = 1.

Within the context of the quantitative model it is

an easy task to calculate, as a function of X, the optimal

investment strategy and maximal point under both the

simple choice and the logarithmic scoring rules. The

results of these calculations are graphed in Figure 4. For

a given X the simple choice procedure allows the larger

profit and, in this sense, is a more lenient reward system

than is the logarithmic. Under the simple choice procedure

it does not pay to ever work on a question where X < .5

while under the logarithmic the student cannot make a

profit if X < 1.5. If X Z 1.5, the student will expend

considerably more effort under the logarithmic scoring rule.
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Note, by the way, that if the student studies a question at

all under the "maximum profit" approach, he studies it at

least up to the level where his probability exceeds p , the

critical probability of the "optimal allocation" approach.

Thus, the same basic pattern appears under the "maximum

profit" approach as under the "optimal allocation" approach.

Specifically, the student is theoretically motivated to

study fewer questions (through avoidance of the harder ones

with A < 1.5) but to a higher degree of mastery under the

logarithmic scoring rule than under the conventional simple

choice procedure. However, the student may be induced to

study all of the questions by increasing the reward for

learning or by increasing the rate of learning (A) either

through improving learning efficiency or through reorgani-

zation of the subject matter.

Rational economic models of the kind we have been

discussing here only catch one side of the problem of

motivating desirable study behavior by students. General

morale is just as important as the realization that they'll

get a better score by following better study habits. It

seems to me that a student's morale is higher if he regards

his instructor as a friend and guide rather than as an

antagonist to be outwitted. I believe the conventional

multiple-choice test encourages the latter point of view,

for the student is forced to express compler.e confidence

in the foil he selects, even if he selects it for very

flimsy reasons indeed. He is forced into a pattern
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of deception on at least some of the questions, implicitly

claiming to be certain of his response when in fact he is

not certain at all. An admissible scoring system, on the

other hand, enables and encourages the student to give

honest answers to all the questions, freely and frankly

identifying where there are gaps in his knowledge. The

examination thus becomes more a communication device from

student to instructor than a duel of wits with a substantial

chance element. So I believe you can make a case that

admissible probability testing, if it is once understood

and accepted by the students, will be a superior motivational

influence in terms of morale and attitude as well as in terms

of hard considerations of effort versus score trade-offs.

Whether these effects will be observable in real

students in real-life situations will be an interesting

matter to investigate empirically.

Now let us turn to the question of how a student's

behavior on an admissible probability test may be affected

by his knowledge of how the total test score is to be used.

The simple-choice procedure is relatively insensitive to

the reward structure within which it is embedded. As a

consequence of this property of the widely used simple-

choice scoring procedure, test givers have probably gotten

in the habit of ignoring external reward structures. An

admissible scoring system makes a test a more sensitive

instrument, and this sensitivity opens the door for certain

distortions in behavior if the final score is not going to

be used properly.
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Let me explain by means of an example. Suppose a

student is facing a 20 question test, and on each question

assesses probability .8 that one alternative is correct and

.2 that the other is correct. If he answers each question

in this way, he will perceive himself as having a certain

probability of achieving any given score. This probability

may be closely approximated by a normal distribution (Fig. 5).

If, instead of reporting probability .8 for the more likely

alternative and .2 for the less likely one, the student

reports probability .75 and .25 respectively, what will

happen to his perceived distribution of score? The mean

of the distribution will slip from 5.56 down to 5.35, but

the standard deviation will go from 3.57 to 2.84. At the

cost of a small loss in expected value the student is able

to get a substantial reduction in the variance of his

distribution. On the other hand, if he reports .85 and .15

on each question, the mean declines to,5.30 while the stand-

ard deviation goes up to 4.48. When you are close to the

optimal response, you can buy a big change in standard

deviation by a small sacrifice in expected score. Students

will undoubtedly sense this, and under certain circumstances

it may introduce a systematic bias into their responses.

For example, suppose that some special prize is to be

given to whichever student gets the best score on a given

test. This will tend to make students overstate their

probabilities (or, to put it another way, to appear to

overvalue their information), because the chance of getting
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a really high score will be worth more than the risk of

getting an unusually low score (which will be no worse for

the student than a mediocre score). The precise quantita-

tive measurement of this effect is very difficult in general,

because it involves a multi-person game which is affected

not only by each player's perception of the difficulty of

the questions but also by his perception of the ability of

the other players. Evel, the case of just two students

competing for a prize on a test consisting of one three-

alternative question is surprisingly complex (see [2],

pp. 12-13).

The special case in which a prize is awarded only in

the event that the student makes a perfect score is very

easy to understand. With this reward structure, the student

should always express absolute certainty no matter how great

his uncertainty is in fact. If he fails to do so, he will

foreclose any possibility of making a perfect score.

Another context in which a student will be motivated

give responses other than his true personal probabilities

is a "pass-fail" system, where he passes the course if he

achieves a certain test score or better, and fails the course

otherwise. The general problem of determining an optimal

response strategy under these circumstances is mathematically

very complex, and no general solution is known. The follow-

ing simplified example, however, can be solved. It illustrates

very clearly how the imposition of a "pass-fail" reward

structure on top of a reproducing scoring system may
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undermine the incentive for responses which accurately

reflect uncertainty.

Suppose that a student is facing an exam consisting

of n two-alternative items. Suppose these questions all "look

alike" to the student in the sense that on each question

he has a fixed probability distribution, p and 1 p, with

p Z 1/2. Suppose that he requires a total score T on the

test in order to pass. He wants to choose a fixed response

r to assign to the preferred answer to each question. What

value of r should he choose in order to maximize his proba-

bility of passing the test? It is not hard to show that

he will have the maximal probability of passing if he

chooses r in such a way that his expected score on each

Tquestion is . Note that this r does not depend on p at

all! So the student's optimal test-taking strategy depends

only on what score he must make in order to pass, and not

on his level of knowledge with respect to each test item.

In short, this reward structure utterly destroys the

reproducing character of the scoring rule. Figure 6 illus-

strates the student's probability of passing as a function

of his response strategy in the particular case where

p = .8, n = 20, and T = .58. Note that the student will

be about nine times as likely to fail the test if he pur-

sues the "maximum expected value" strategy as he will be

if he follows the "maximum probability of passing" strategy.

In an actual situation the reproducing character of

the scoring rule would not be completely washed out,
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however, because the student would not have precisely the

same probability distribution for each item. It seems

intuitively evident (although a rigorous proof has not yet

been discovered) that his best strategy would be to let his

responses vary with his subjective probabilities, but

hedge all of them either up or down.

The best remedy is probably to avoid creating reward

structures which put a highly non-linear value on points

earned under an allegedly reproducing scoring rule.

Another (partial) remedy is avoid letting the student

know how many questions there are on a test, or how diffi-

cult they are, before he begins to take it.

Everything I've said today is, of course, theoretical.

We don't know if actual students will exhibit the behavior

which our theory predicts or not. We're anxiously looking

forward to controlled field experiments such as are now

going on at Air University, to discover whether the advan-

tages and dangers theoretically inherent in computer-

aided admissible probability testing show up in real life.
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